
Noise Clustering

THE PROBLEM:

- Voice interfaces become more common for day-to-day communication. Users tend to use

these interfaces on the go in very noisy environments.

- There is no software-level audio noise cancellation technique that was proven to

work in real-time applications.

- Common intersections between DSP tasks and machine learning algorithms go through

deep learning and require long and costly learning time.

The future belongs to

algorithms that just know.

GOALS:

- To find a way to reduce noise from speech (voice) recordings

- To cluster an audio signal into two groups: ‘voice’ and ‘noise’ 
(to find a model, not to predict)

- To apply machine learning techniques and algorithms for signal processing tasks

- To find a method that could be applied in real-time applications 
(‘production-ready’)

POTENTIAL APPLICATIONS:

- Fast noise reduction on mobile voice messages

- Better speech-to-text capabilities, that wouldn’t require deep learning

- Audio signal manipulations (voice filters, fun)

Methods

DATASET: AUDIO SIGNAL AS A DATASET

array([0.00000000e+00, 0.00000000e+00,

0.00000000e+00, …, -9.15527344e-05, -6.10351562e-05,

-9.15527344e-05], dtype=float32)

Audio time series

Audio time series

Spectrogram

array([[2.03640684e-05 -0.00000000e+00j,

 5.99053465e-02 -0.00000000e+00j,

 4.25433785e-01 -0.00000000e+00j, ...,

 3.46554875e-01 -0.00000000e+00j,

 1.12801301e+00 -0.00000000e+00j,

 -2.69750923e-01 -0.00000000e+00j],

 ...,

 [-1.78232608e-06 -0.00000000e+00j,

 -7.45655780e-05 -0.00000000e+00j,

 -4.86985336e-05 -0.00000000e+00j, ...,

 1.32114466e-04 -0.00000000e+00j,

 -9.93174908e-05 -0.00000000e+00j,

 5.87694813e-04 -0.00000000e+00j]],

dtype=complex64)

3D table

array([[0, 0, 0],

 [1, 0, 0],

 [2, 0, 0],

 ...,

 [487, 1024, 0],

 [488, 1024, 0],

 [489, 1024, 0]])

USING 3D
TABLES FOR
CLUSTERING AND
VISUALIZATION

plt.pcolormesh(spectrogram)

plt.scatter(X[:,0], X[:,1], c=X[:,2])

plt.scatter(X[:,0], X[:,1], c=spectral_prediction)

ALGORITHMS:

- Spectral Clustering

- ‘rbf’ VS. ‘nearest_neighbors’ to create the affinity matrix

- ‘discretize’ VS. ‘kmeans' to assign the labels

- ICA (Independent Component Analysis)

PROCESS:
1. Load audio file  

=> Get time series (array)

2. Run Short-time Fourier transform  
=> Get spectrogram of amplitudes (matrix, bins * frames)

3. [optional] Change the structure of the data to improve clustering results 
=> Get a new matrix with row per sample

4. Cluster the data using a clustering algorithm  
=> Get a matrix with cluster label per sample

5. Remove (or reduce) the samples that were clustered as noise 
=> Get noise reduced spectrogram (matrix)

6. Run Inverse short-time Fourier transform  
=> Get time series (array)

7. Write a file using the new time series array  
=> Output .wav file

2049 x 1960 =  
4,016,040 samples

683 x 70 =  
47,810 samples

2049 x 1960 =  
4,016,040 samples

REDUCING COMPUTATION TIME

High-res > Low-res > High-res

OPEN-SOURCE PYTHON3 PACKAGES:
- Scikit-learn

- Spectral Clustering: http://scikit-learn.org/stable/modules/generated/
sklearn.cluster.SpectralClustering.html

- FastICA: http://scikit-learn.org/stable/modules/generated/
sklearn.decomposition.FastICA.html

- LibROSA (Brian McFee, PhD @ NYU Steinhardt)  
http://librosa.github.io/librosa/index.html

- Graphical representation

- Matplotlib  
http://matplotlib.org/

- Seaborn  
https://seaborn.pydata.org

- Pandas  
http://pandas.pydata.org/

- blind_source_separation.py GitHub Gist by abinashpanda  
https://gist.github.com/abinashpanda/11113098

http://scikit-learn.org/stable/modules/generated/sklearn.cluster.SpectralClustering.html
http://scikit-learn.org/stable/modules/generated/sklearn.cluster.SpectralClustering.html
http://scikit-learn.org/stable/modules/generated/sklearn.cluster.SpectralClustering.html
http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.FastICA.html
http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.FastICA.html
http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.FastICA.html
http://librosa.github.io/librosa/index.html
http://matplotlib.org/
https://seaborn.pydata.org
http://pandas.pydata.org/
https://gist.github.com/abinashpanda/11113098

Results
https://dodiku.github.io/audio_noise_clustering/results/

https://dodiku.github.io/audio_noise_clustering/results/

THE ORIGINAL RECORDING 🔊

SPECTRAL
CLUSTERING 01

- Full spectrogram (matrix)

as dataset

- Using ‘nearest_neighbors’

to create the affinity

matrix (adjacency matrix)  
 
Using ‘arpack’ as the eigen

solver

- Runtime = 4.4s

Original file spectrogram

Clustering result

Output file (high-res)

SPECTRAL
CLUSTERING 02

- Full spectrogram (matrix)

as dataset

- Column-by-column clustering

- Using ‘rbf’ to create the

affinity matrix

- Reducing res > clustering >

applying on high res

- Runtime = 24.2s - 26.9s  
(in full res = ~1:30h)

Low-res spectrogram

Low-res clustering

Output file (high-res)

SPECTRAL
CLUSTERING 03

- Full 3D table as dataset

- All methods showed similar

results

- Reducing res > clustering >

applying on high res

- Runtime = ~4:10m  
(in full res = ∞)

Low-res spectrogram

Low-res clustering

Output file (high-res)

SPECTRAL
CLUSTERING 04

- Full 3D table as dataset

- Column-by-column clustering

- All methods showed similar

results

- Reducing res > clustering >

applying on high res

- Runtime = ~34.4s  
(in full res = ~2.5h)

Low-res spectrogram

Low-res clustering

Output file (high-res)

ICA:  
INDEPENDENT
COMPONENT
ANALYSIS

- Convolving 2 spectral

clustering results.

- Generating two audio files:  
one with noise  
one with (supposedly)

clearer speech

- Runtime = 0.2s-0.8s

Inputs

Convolved signals

Independent signals

Conclusions

CONCLUSIONS:

- The complex nature of audio signals makes it very hard (maybe impossible?) to

cluster away noise.

- The tested clustering technique could not produce better results than existing

production techniques.

- Computation time Computation time and the nature of the data makes the research

hard to do on a laptop machine 💻 .

- DSP is great! The impact of machine learning on audio applications (besides speech-

to-text) has yet to come. I’ll keep on searching for it.

FURTHER RESEARCH:

- Implementing a solution using other clustering techniques, such as kmeans and

hierarchical clustering.

- Expanding the data by adding a column that describes the distance between a sample

(a bin) and the centroid of the recording.

- Generating a solid ICA pipeline (results as an input, noise as an input)

Thanks 🙏

