
Noise Clustering



THE PROBLEM: 

- Voice interfaces become more common for day-to-day communication. Users tend to use 

these interfaces on the go in very noisy environments.  

- There is no software-level audio noise cancellation technique that was proven to 

work in real-time applications. 

- Common intersections between DSP tasks and machine learning algorithms go through 

deep learning and require long and costly learning time. 



The future belongs to 

algorithms that just know.



GOALS: 

- To find a way to reduce noise from speech (voice) recordings 

- To cluster an audio signal into two groups: ‘voice’ and ‘noise’ 
(to find a model, not to predict) 

- To apply machine learning techniques and algorithms for signal processing tasks 

- To find a method that could be applied in real-time applications 
(‘production-ready’)



POTENTIAL APPLICATIONS: 

- Fast noise reduction on mobile voice messages 

- Better speech-to-text capabilities, that wouldn’t require deep learning 

- Audio signal manipulations (voice filters, fun)



Methods



DATASET: AUDIO SIGNAL AS A DATASET

array([  0.00000000e+00,   0.00000000e+00,   

0.00000000e+00, …, -9.15527344e-05,  -6.10351562e-05,  

-9.15527344e-05], dtype=float32)

Audio time series

Audio time series

Spectrogram

array([[  2.03640684e-05 -0.00000000e+00j, 

          5.99053465e-02 -0.00000000e+00j, 

          4.25433785e-01 -0.00000000e+00j, ..., 

          3.46554875e-01 -0.00000000e+00j, 

          1.12801301e+00 -0.00000000e+00j, 

         -2.69750923e-01 -0.00000000e+00j], 

         ...,  

          [ -1.78232608e-06 -0.00000000e+00j, 

         -7.45655780e-05 -0.00000000e+00j, 

         -4.86985336e-05 -0.00000000e+00j, ..., 

          1.32114466e-04 -0.00000000e+00j, 

         -9.93174908e-05 -0.00000000e+00j, 

          5.87694813e-04 -0.00000000e+00j]], 

dtype=complex64)

3D table

array([[   0,    0,    0], 

       [   1,    0,    0], 

       [   2,    0,    0], 

       ...,  

       [ 487, 1024,    0], 

       [ 488, 1024,    0], 

       [ 489, 1024,    0]])



USING 3D 
TABLES FOR 
CLUSTERING AND 
VISUALIZATION

plt.pcolormesh(spectrogram)

plt.scatter(X[:,0], X[:,1], c=X[:,2])

plt.scatter(X[:,0], X[:,1], c=spectral_prediction)



ALGORITHMS: 

- Spectral Clustering 

- ‘rbf’ VS. ‘nearest_neighbors’ to create the affinity matrix 

- ‘discretize’ VS. ‘kmeans' to assign the labels 

- ICA (Independent Component Analysis)



PROCESS: 
1. Load audio file  

=> Get time series (array) 

2. Run Short-time Fourier transform  
=> Get spectrogram of amplitudes (matrix, bins * frames) 

3. [optional] Change the structure of the data to improve clustering results 
=> Get a new matrix with row per sample 

4. Cluster the data using a clustering algorithm  
=> Get a matrix with cluster label per sample 

5. Remove (or reduce) the samples that were clustered as noise 
=> Get noise reduced spectrogram (matrix) 

6. Run Inverse short-time Fourier transform  
=> Get time series (array) 

7. Write a file using the new time series array  
=> Output .wav file



2049 x 1960 =  
4,016,040 samples

683 x 70 =  
47,810 samples

2049 x 1960 =  
4,016,040 samples

REDUCING COMPUTATION TIME 

High-res > Low-res > High-res



OPEN-SOURCE PYTHON3 PACKAGES: 
- Scikit-learn 

- Spectral Clustering: http://scikit-learn.org/stable/modules/generated/
sklearn.cluster.SpectralClustering.html 

- FastICA: http://scikit-learn.org/stable/modules/generated/
sklearn.decomposition.FastICA.html 

- LibROSA (Brian McFee, PhD @ NYU Steinhardt)  
http://librosa.github.io/librosa/index.html 

- Graphical representation 

- Matplotlib  
http://matplotlib.org/ 

- Seaborn  
https://seaborn.pydata.org 

- Pandas  
http://pandas.pydata.org/ 

- blind_source_separation.py GitHub Gist by abinashpanda  
https://gist.github.com/abinashpanda/11113098

http://scikit-learn.org/stable/modules/generated/sklearn.cluster.SpectralClustering.html
http://scikit-learn.org/stable/modules/generated/sklearn.cluster.SpectralClustering.html
http://scikit-learn.org/stable/modules/generated/sklearn.cluster.SpectralClustering.html
http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.FastICA.html
http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.FastICA.html
http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.FastICA.html
http://librosa.github.io/librosa/index.html
http://matplotlib.org/
https://seaborn.pydata.org
http://pandas.pydata.org/
https://gist.github.com/abinashpanda/11113098


Results
https://dodiku.github.io/audio_noise_clustering/results/

https://dodiku.github.io/audio_noise_clustering/results/


THE ORIGINAL RECORDING 🔊



SPECTRAL 
CLUSTERING 01 

- Full spectrogram (matrix) 

as dataset 

- Using ‘nearest_neighbors’ 

to create the affinity 

matrix (adjacency matrix)  
 
Using ‘arpack’ as the eigen 

solver 

- Runtime = 4.4s

Original file spectrogram

Clustering result

Output file (high-res)



SPECTRAL 
CLUSTERING 02 

- Full spectrogram (matrix) 

as dataset 

- Column-by-column clustering 

- Using ‘rbf’ to create the 

affinity matrix 

- Reducing res > clustering > 

applying on high res 

- Runtime = 24.2s - 26.9s  
(in full res = ~1:30h)

Low-res spectrogram

Low-res clustering

Output file (high-res)



SPECTRAL 
CLUSTERING 03 

- Full 3D table as dataset 

- All methods showed similar 

results 

- Reducing res > clustering > 

applying on high res 

- Runtime = ~4:10m  
(in full res = ∞)

Low-res spectrogram

Low-res clustering

Output file (high-res)



SPECTRAL 
CLUSTERING 04 

- Full 3D table as dataset 

- Column-by-column clustering 

- All methods showed similar 

results 

- Reducing res > clustering > 

applying on high res 

- Runtime = ~34.4s  
(in full res = ~2.5h)

Low-res spectrogram

Low-res clustering

Output file (high-res)



ICA:  
INDEPENDENT 
COMPONENT 
ANALYSIS 

- Convolving 2 spectral 

clustering results. 

- Generating two audio files:  
one with noise  
one with (supposedly) 

clearer speech 

- Runtime = 0.2s-0.8s

Inputs

Convolved signals

Independent signals



Conclusions



CONCLUSIONS: 

- The complex nature of audio signals makes it very hard (maybe impossible?) to 

cluster away noise. 

- The tested clustering technique could not produce better results than existing 

production techniques. 

- Computation time Computation time and the nature of the data makes the research 

hard to do on a laptop machine 💻 . 

- DSP is great! The impact of machine learning on audio applications (besides speech-

to-text) has yet to come. I’ll keep on searching for it.



FURTHER RESEARCH: 

- Implementing a solution using other clustering techniques, such as kmeans and 

hierarchical clustering. 

- Expanding the data by adding a column that describes the distance between a sample 

(a bin) and the centroid of the recording. 

- Generating a solid ICA pipeline (results as an input, noise as an input)



Thanks 🙏


