
Audio Noise Clustering

Dror Ayalon (dda290)

CUSP-GX-5006 Machine Learning for Cities (NYU)
Final Project

Abstract

Clustering is a major task in machine learning and many
different clustering techniques are available. Very small
academical effort was invested in finding the intersec-
tion between machine learning algorithms and digital sig-
nal processing (DSP) tasks. This research tried to utilize
clustering algorithms, in particular spectral clustering and
Independent Component Analysis, to reduce noise from
speech centric audio recordings. The results were com-
pared with a noise-reduced outcome, which was gener-
ated using existing post-production techniques, such as
equalizing and frequency band-passes, that were imple-
mented using Python. The noise-reduced audio outcome
using machine learning algorithms was not as good as
the audio outcome using post-production techniques, but
led to some interesting conclusions and ideas for fur-
ther research. All results could be heard on this url -
https://dodiku.github.io/audio noise clustering/results .

1 Introduction

Voice interfaces become more common for day-to-day
communication. Mobile devices users tend to use these
interfaces on-the-go in very noisy environments. The
main goal of this research was to analyze an audio record-
ing and to find the model that could cluster the signal into
two groups: ”speech” and ”noise”. Another motivation
for this research was to find a computational efficient way
to perform this complicated task in real-time applications,

without the need for a long and costly deep-learning pro-
cess.

Figure 1: The audio recording represented as a time-series
(amplitude over time).

2 Methods and Data Sets

1. Audio signal as a dataset - In order to run machine
learning algorithms on the audio signal, there was a
need to convert the digital audio time series (see fig-
ure 1) into a dataset the could be clustered. The au-
dio signal was converted into two types of data struc-
tures:

(a) Spectrogram - After running a short-time
Fourier transform on the audio signal using Li-

1

bROSA [2], a Python audio analysis package,
the signal could be represented as a spectro-
gram using a a matrix, which provides data
about the intensity of each frequency range
within a time frame (see figure 2). Each cell
on the matrix is a data sample.

Figure 2: The audio recording represented as a spectro-
gram (frequency bins over time).

(b) 3D table - Another way to represent the audio
signal data is using a 3-dimensional table (see
figure 3), where each row is a single sample of
the data. The data on each and every sample is
structured as follows:

i. Column 1: A numeric value that repre-
sents the time-frame number of the sam-
ple.

ii. Column 2: A numeric value that repre-
sents the the frequency range of the sam-
ple.

iii. Column 3: The level of intensity of the
sample (the frequency range in the time-
frame).

Using these 2 different data structures as an in-
put to the spectral clustering algorithm gener-
ated different results (more on that on the re-
sults section). Another motivation behind the
usage of 3D table as a dataset structure was the
ability to visualize the data using scatter plots,
where each sample is a point on the plot. The
visualization allowed a closer and cleared in-

Figure 3: The audio recording represented as a 3D table,
where each row includes attributes on a specific sample.

vestigation of the clustering results (see exam-
ple in figure 4).

Figure 4: An example from one of the results of a spectral
clustering on a 3D dataset, that represents a spectrogram
of an audio signal.

2. The research was done using Python3 and the
machine learning Python package scikit-learn
(http://scikit-learn.org/). The following scikit-learn
algorithms were used to the generate the results for
this research:

• Spectral clustering
(sklearn.cluster.SpectralClustering)
[4] - To split noisy frequencies from speech
frequencies, a variety of spectral clustering
techniques were tested during this research.

2

The largest variation in the outcomes were
generated using ”rbf” VS. ”nearest neighbors”
as methods to create the affinity matrix, and
”discretize” VS. ”kmeans” as methods to
assign the clustering labels (more about that on
the results section).
The spectral clustering algorithm was ap-
plied on both structures of the the dataset
(spectrogram and 3D table) using 2 strategies:
(a) Complete approach: The entire dataset

was used as an input for the algorithm.
(b) Column-by-column approach: Applying

the spectral clustering algorithm on each
and every time frame separately.

Each of these strategies generated very differ-
ent results (more about that on the results sec-
tion).

• Independent Component Analysis
(sklearn.decomposition.FastICA)
[1] [3] - An ICA algorithm was used as
another method to split noise from speech (see
figure 5). Since the ICA algorithm receives 2
inputs (in our case, audio signals) and gener-
ates 2 outputs based on the estimated source of
the signal (speech and background noise), all
possible combinations of the following audio
signals were used as inputs:

– The original recording
– A noise reduced version of the origi-

nal recording using post-production tech-
niques

– Audio signal that was clustered as ”noise”
using the spectral clustering algorithm
with the complete spectrogram matrix as
a dataset

– Audio signal that was clustered as
”speech” using the spectral clustering al-
gorithm with the complete spectrogram
matrix as a dataset

– Audio signal that was clustered as ”noise”
using the spectral clustering algorithm
with the complete 3D table as a dataset

– Audio signal that was clustered as
”speech” using the spectral clustering al-

gorithm with the complete 3D table as a
dataset

– Audio signal that was clustered as ”noise”
using the spectral clustering algorithm in a
column-by-column approach on the com-
plete spectrogram matrix as a dataset

– Audio signal that was clustered as
”speech” using the spectral clustering al-
gorithm in a column-by-column approach
on the complete spectrogram matrix as a
dataset

– Audio signal that was clustered as ”noise”
using the spectral clustering algorithm in a
column-by-column approach on the com-
plete 3D table as a dataset

– Audio signal that was clustered as
”speech” using the spectral clustering al-
gorithm in a column-by-column approach
on the complete 3D table as a dataset

It is important to mention that using differ-
ent parameters on the spectral clustering algo-
rithm, each of the methods specified above gen-
erated different clusters, and therefore, differ-
ent signals. All these different outcomes where
used as an input for the ICA algorithm. The
best results are shown on the results section.

Figure 5: The process of convolving two audio signal,
and splitting them again, based on their estimated sources,
using ICA.

3. Data reduction process - To reduce the computa-
tion time, audio recordings were sampled in a regu-
lar sampling-rate and a low-resolution sampling-rate.
The algorithmic procedures were done on the low-
resolution datasets. Then, the low-resolution dataset
was stretched to the size of the regular-resolution

3

dataset (see figure 6). The clustering results, which
where generated on the the low-res dataset, were ap-
plied on the stretched regular sized dataset. This
method enabled reasonable runtimes for the cluster-
ing procedures, and the ability to generate outcome
wave files (which can only be generated using the
high-res sampling dataset) that were used to evaluate
the final results of each run.

Figure 6: The process of stretching a low-res dataset (au-
dio signal spectrogram) to the size of the regular dataset,
without loosing the main features and structure of the
dataset.

4. To summarize, the work process for this research
was as follows:

(a) Load audio file

(b) Sample the audio file, using a low-res sample-
rate and a regular-res sample-rate, to generate
audio time series.

(c) Convert the audio time series to a spectrogram
of amplitudes (matrix, bins * frames) using a
Short-time Fourier transform.

(d) (optional) Change the structure of the data to
improve clustering results

(e) Cluster the data using the spectral clustering al-
gorithm

(f) Stretch the low-res dataset to the size of the
regular-size dataset

(g) Apply the clustering results on the stretched
dataset

(h) Remove (or reduce) the samples that were clus-
tered as noise

(i) Run Inverse short-time Fourier transform to
convert the spectrogram back to an audio time
series

(j) Write a file using the new time series array-
Compare results sonically

3 Results

1. All outcomes could be heard on the following url -
https://dodiku.github.io/audio noise clustering/results/

Figure 7: LEFT: Clustering results for the complete spec-
trogram as a dataset. RIGHT: Applying the clustering
reults on the speech recording.

2. A very ”naive” result was generated using the
spectrogram (matrix) as dataset, and clustering the
data using the ”complete approach”, while ”near-
est neighbors” was set to create the affinity matrix
(adjacency matrix) and ”arpack” as the eigen solver
(see figure 7 or listen to the best results under ”spec-
tral clustering 01 - Spectrogram” on the results web-
page).
In terms of computation time, this result was gen-
erated relatively quickly (Runtime = 4.4s for a 10s
recording), but was not satisfying enough sonically.

4

3. Very interesting results were generated using the
spectrogram (matrix) as dataset in a ”column-by-
column” approach, and while ”rbf” was set as the
method to create the affinity matrix. The cluster-
ing algorithm was able to pick-up the dominant parts
of the recording (see figure 8), but the outcomes
have many artifacts and the isolated speech is not
clear enough (listen to the best results under ”spec-
tral clustering 02 - Column-by-Column” on the re-
sults webpage).
The main drawback of this result was the long run-
time (24.2s-26.9s on a low-res dataset, 1:30h on a
regular-res dataset for a 10s recording).

Figure 8: LEFT: Clustering results for the complete spec-
trogram as a dataset in a ”column-by-column” approach.
RIGHT: Applying the clustering reults on the speech
recording.

4. The best result from the spectral algorithm alone,
was generated when the input was the 3D table as
dataset using a ”column-by-column” approach (see
figure 9, or listen under ”spectral clustering 04 -
Column-by-Column from a 3D table” on the results
webpage).
This result was the best sonically, but was very heavy
in terms of computation time (Runtime = 34.4s for
low-res dataset, and 2.5h for a regular-res dataset for
a 10s recording).

5. Two very interesting results were generated using the
ICA algorithm. On one of these cases, the inputs to
the ICA algorithm were:

(a) The speech cluster outcome from spectral clus-
tering using column-by-column approach on a
3D table.

(b) The speech cluster outcome from spectral clus-
tering using complete spectrogram.

On the other case, the inputs to the ICA algorithm
were:

(a) The speech cluster outcome from spectral clus-
tering using column-by-column approach on a
3D table.

(b) ICA result using:

i. The speech cluster outcome from spec-
tral clustering using column-by-column
approach on a 3D table and ”kmeans” as
to assign the clustering labels.

ii. A noise reduced version of the origi-
nal recording using post-production tech-
niques.

The last described result is considered to be the best
result that was found on this research (listen to these
results under ”ICA: Independent component analy-
sis” on the results webpage).

Figure 9: LEFT: Clustering results for the 3D table as
a dataset in a ”column-by-column” approach. RIGHT:
Applying the clustering reults on the speech recording.

4 Conclusions

1. Since human speech varies between a large range of
frequencies, that in most cases overlap with back-
ground noise frequencies, it is very hard (maybe im-
possible) to cluster away noise.

2. The tested clustering technique could not produce
better results than existing production techniques.

5

3. The data reduction and stretch technique was very
successful in reducing the computation time of the
clustering process, while not harming the outcomes
of the process.

4. Using results from spectral clustering using the
”complete approach” and the ”column-by-column”
approach as inputs to and ICA algorithm could pro-
duce promising results.

5. This research did not show promising reults using the
noise frequencies, as clustered by the spectral clus-
tering algorithm. This might be due to the similar-
ity of the noise on the ”speech” cluseter and on the
”noise” cluster.

6. Using the entire spectrogram as an input to the spec-
tral algorithm tend to generate ”naive” clusters. This
behaviour makes sense since the distance between
two frequency bins on different time frame (differ-
ent column) is an important factor that effects algo-
rithm”s affinity matrix.

References

[1] A. Hyvrinen and E. Oja. Independent component
analysis: Algorithms and applications. Neural Net-

works, 13((4-5)):411–430, 2000.

[2] B. McFee, C. Raffel, D. Liang, D. P.W. Ellis,
M. McVicar, E. Battenberg, and O. Nieto. Librosa:
Audio and music signal analysis in python. Python in

Science Conf. (SCIPY), 2015.

[3] scikit-learn developers. scikit-learn: Fast ica.
http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.FastICA.html,
Open Source, BSD License.

[4] scikit-learn developers. scikit-learn: Spectral cluster-
ing.
http://scikit-learn.org/stable/modules/generated/sklearn.cluster.SpectralClustering.html,
Open Source, BSD License.

6

Read It Never

Noise Clustering

Dror Ayalon

Machine Learning for Cities // CUSP-GX-5006

Final Project

THE PROBLEM:

- Voice interfaces become more common for day-to-day communication. Users tend to use

these interfaces on the go in very noisy environments.

- There is no software-level audio noise cancellation technique that was proven to

work in real-time applications.

- Common intersections between DSP tasks and machine learning algorithms go through

deep learning and require long and costly learning time.

GOALS:

- To find a way to reduce noise from speech (voice) recordings

- To cluster an audio signal into two groups: ‘voice’ and ‘noise’ 
(to find a model, not to predict)

- To apply machine learning techniques and algorithms for signal processing tasks

- To find a method that could be applied in real-time applications 
(‘production-ready’)

POTENTIAL APPLICATIONS:

- Fast noise reduction on mobile voice messages

- Better speech-to-text capabilities, that wouldn’t require deep learning

- Audio signal manipulations (voice filters, fun)

Methods

DATASET: AUDIO SIGNAL AS A DATASET

array([0.00000000e+00, 0.00000000e+00,

0.00000000e+00, …, -9.15527344e-05, -6.10351562e-05,

-9.15527344e-05], dtype=float32)

Audio time series

Audio time series

Spectrogram

array([[2.03640684e-05 -0.00000000e+00j,

 5.99053465e-02 -0.00000000e+00j,

 4.25433785e-01 -0.00000000e+00j, ...,

 3.46554875e-01 -0.00000000e+00j,

 1.12801301e+00 -0.00000000e+00j,

 -2.69750923e-01 -0.00000000e+00j],

 ...,

 [-1.78232608e-06 -0.00000000e+00j,

 -7.45655780e-05 -0.00000000e+00j,

 -4.86985336e-05 -0.00000000e+00j, ...,

 1.32114466e-04 -0.00000000e+00j,

 -9.93174908e-05 -0.00000000e+00j,

 5.87694813e-04 -0.00000000e+00j]],

dtype=complex64)

3D table

array([[0, 0, 0],

 [1, 0, 0],

 [2, 0, 0],

 ...,

 [487, 1024, 0],

 [488, 1024, 0],

 [489, 1024, 0]])

USING 3D
TABLES FOR
CLUSTERING AND
VISUALIZATION

plt.pcolormesh(spectrogram)

plt.scatter(X[:,0], X[:,1], c=X[:,2])

plt.scatter(X[:,0], X[:,1], c=spectral_prediction)

ALGORITHMS:

- Spectral Clustering

- ‘rbf’ VS. ‘nearest_neighbors’ to create the affinity matrix

- ‘discretize’ VS. ‘kmeans' to assign the labels

- ICA (Independent Component Analysis)

PROCESS:
1. Load audio file  

=> Get time series (array)

2. Run Short-time Fourier transform  
=> Get spectrogram of amplitudes (matrix, bins * frames)

3. [optional] Change the structure of the data to improve clustering results 
=> Get a new matrix with row per sample

4. Cluster the data using a clustering algorithm  
=> Get a matrix with cluster label per sample

5. Remove (or reduce) the samples that were clustered as noise 
=> Get noise reduced spectrogram (matrix)

6. Run Inverse short-time Fourier transform  
=> Get time series (array)

7. Write a file using the new time series array  
=> Output .wav file

2049 x 1960 =  
4,016,040 samples

683 x 70 =  
47,810 samples

2049 x 1960 =  
4,016,040 samples

REDUCING COMPUTATION TIME

High-res > Low-res > High-res

OPEN-SOURCE PYTHON3 PACKAGES:
- Scikit-learn

- Spectral Clustering: http://scikit-learn.org/stable/modules/generated/
sklearn.cluster.SpectralClustering.html

- FastICA: http://scikit-learn.org/stable/modules/generated/
sklearn.decomposition.FastICA.html

- LibROSA (Brian McFee, PhD @ NYU Steinhardt)  
http://librosa.github.io/librosa/index.html

- Graphical representation

- Matplotlib  
http://matplotlib.org/

- Seaborn  
https://seaborn.pydata.org

- Pandas  
http://pandas.pydata.org/

- blind_source_separation.py GitHub Gist by abinashpanda  
https://gist.github.com/abinashpanda/11113098

http://scikit-learn.org/stable/modules/generated/sklearn.cluster.SpectralClustering.html
http://scikit-learn.org/stable/modules/generated/sklearn.cluster.SpectralClustering.html
http://scikit-learn.org/stable/modules/generated/sklearn.cluster.SpectralClustering.html
http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.FastICA.html
http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.FastICA.html
http://scikit-learn.org/stable/modules/generated/sklearn.decomposition.FastICA.html
http://librosa.github.io/librosa/index.html
http://matplotlib.org/
https://seaborn.pydata.org
http://pandas.pydata.org/
https://gist.github.com/abinashpanda/11113098

Results
https://dodiku.github.io/audio_noise_clustering/results/

https://dodiku.github.io/audio_noise_clustering/results/

THE ORIGINAL RECORDING !

SPECTRAL
CLUSTERING 01

- Full spectrogram (matrix)

as dataset

- Using ‘nearest_neighbors’

to create the affinity

matrix (adjacency matrix)  
 
Using ‘arpack’ as the eigen

solver

- Runtime = 4.4s

Original file spectrogram

Clustering result

Output file (high-res)

SPECTRAL
CLUSTERING 02

- Full spectrogram (matrix)

as dataset

- Column-by-column clustering

- Using ‘rbf’ to create the

affinity matrix

- Reducing res > clustering >

applying on high res

- Runtime = 24.2s - 26.9s  
(in full res = ~1:30h)

Low-res spectrogram

Low-res clustering

Output file (high-res)

SPECTRAL
CLUSTERING 03

- Full 3D table as dataset

- All methods showed similar

results

- Reducing res > clustering >

applying on high res

- Runtime = ~4:10m  
(in full res = ∞)

Low-res spectrogram

Low-res clustering

Output file (high-res)

SPECTRAL
CLUSTERING 04

- Full 3D table as dataset

- Column-by-column clustering

- All methods showed similar

results

- Reducing res > clustering >

applying on high res

- Runtime = ~34.4s  
(in full res = ~2.5h)

Low-res spectrogram

Low-res clustering

Output file (high-res)

ICA:  
INDEPENDENT
COMPONENT
ANALYSIS

- Convolving 2 spectral

clustering results.

- Generating two audio files:  
one with noise  
one with (supposedly)

clearer speech

- Runtime = 0.2s-0.8s

Inputs

Convolved signals

Independent signals

Conclusions

CONCLUSIONS:

- The complex nature of audio signals makes it very hard (maybe impossible?) to

cluster away noise.

- The tested clustering technique could not produce better results than existing

production techniques.

- Computation time and the nature of the data makes the research hard to do on a

laptop machine " .

- DSP is great! The impact of machine learning on audio applications (besides speech-

to-text) has yet to come. I’ll keep on searching for it.

FURTHER RESEARCH:

- Implementing a solution using other clustering techniques, such as kmeans and

hierarchical clustering.

- Expanding the data by adding a column that describes the distance between a sample

(a bin) and the centroid of the recording.

- Generating a solid ICA pipeline (results as an input, noise as an input)

Thanks #

	Introduction
	Methods and Data Sets
	Results
	Conclusions

